A Molecular Orbital Study of the Conformational Consequences of Stabilizing and Destabilizing Orbital Interactions in Hydrazine, Diphosphine, and Aminophosphine

Alan H. Cowley, * ${ }^{\text {a }, 2}$ David John Mitchell, ${ }^{1 \mathrm{~b}}$ Myung-Hwan Whangbo, ${ }^{* l e}$ and SauI Wolfe* ${ }^{1 b, d}$
Contribution from the Departments of Chemistry, The University of Texas at Austin, Austin, Texas 78712, Queen's University, Kingston, Ontario, K7L 3N6, Canada, and North Carolina State University, Raleigh, North Carolina 27650. Received October 3, 1978

Abstract

Ab initio SCF-MO calculations have been performed at the 4-31G level for the rotational and pyramidal inversional processes in hydrazine, diphosphine, and aminophosphine. Extensive geometry optimization has been carried out in each case. Combination of the present results with related data from the literature leads to the following conclusions: (1) only the gauche conformation is a minimum on the rotational curve of hydrazine; (2) both gauche and anti conformations are minima on the rotational curve of diphosphine; (3) the dihedral angle in gauche diphosphine is 76°; (4) the pyramidal inversion barrier of hydrazine is slightly higher than that of a mmonia; (5) the pyramidal inversion barrier of diphosphine is significantly lower than that of phosphine; (6) the "bisected" conformation is the transition state for pyramidal inversion in both hydrazine and diphosphine, but it is the ground state of a minophosphine; (7) nitrogen adopts a pyramidal configuration in the rotational transition state of aminophosphine; (8) the nitrogen inversion barrier is lower in aminophosphine than in ammonia; (9) the phosphorus inversion barrier is higher in aminophosphine than in phosphine. All of these observations are examined by a quantitative perturbational molecular orbital (PMO) analysis of the $4-31 \mathrm{G}$ wave functions, which takes into account both the stabilizing two-orbital two-electron and the destabilizing two-orbital four-electron orbital interactions between two AH_{2} fragments or between an AH_{2} and a BH_{2} fragment. Useful insights into the factors responsible for the static and dynamic stereochemical properties of these molecules have thus been achieved. In particular, it has been possible to define, more clearly than in our previous work, the interrelationships between the PMO methodology and more classical concepts such as steric effects, dipoledipole interactions, and electronegativity effects.

Introduction

Hydrazines and their congeners have attracted the attention of theoreticians, spectroscopists, and structural chemists for more than 4 decades. ${ }^{3}$ However, despite the intense interest in such molecules, several aspects of their static and dynamic stereochemical properties are still uncertain. The concern with aminophosphines is more recent, ${ }^{4}$ and, consequently, even less is known concerning these molecules.

Structural ${ }^{5}$ and ab initio molecular orbital (MO) calculations ${ }^{6}$ have established that the ground-state geometry of $\mathrm{N}_{2} \mathrm{H}_{4}$ is gauche, with a dihedral angle, ϕ, close to 90° (see 1). A

1
torsional itinerary about the $\mathrm{N}-\mathrm{N}$ bond involves accessing the syn conformation ($\phi=0^{\circ}$), two enantiomeric gauche conformations ($\phi=90$ and 270°), and the anti conformation ($\phi=$ 180°). Ab initio theoretical estimates of the gauche-anti and gauche-syn barrier heights fall in the ranges $1.6-6.2$ and $9.6-13.7 \mathrm{kcal} / \mathrm{mol}$, respectively. ${ }^{6}$ Unfortunately, the experimental value of $3.1 \mathrm{kcal} / \mathrm{mol}$, obtained from microwave spectroscopy, was based on the incorrect assumption that the two barriers are equal. ${ }^{5 c}$

Microwave ${ }^{7}$ and vibrational spectroscopic ${ }^{8}$ investigations on $\mathrm{P}_{2} \mathrm{H}_{4}$ have revealed that this molecule adopts the gauche ground state conformation ($1, \phi=74^{\circ}$) in the vapor, liquid, and solid phases. An earlier structure determination by electron diffraction ${ }^{9}$ was less definitive; nevertheless, the gauche conformation emerged as the preferred structure. Ab initio MO calculations have also been carried out on $\mathrm{P}_{2} \mathrm{H}_{4}{ }^{10}$ The most accurate study ${ }^{10 d}$ indicates that, as in the case of $\mathrm{N}_{2} \mathrm{H}_{4}$, the
relative stabilities of the $\mathrm{P}_{2} \mathrm{H}_{4}$ conformations are gauche $>$ anti $>$ syn. However, in contrast to hydrazine, diphosphine is found to exhibit a local minimum at the anti conformation. Theoretical estimates ${ }^{10 d, e}$ of the gauche-anti and gauche-syn energy differences fall in the ranges 0.85-1.61 and 4.02-4.85 $\mathrm{kcal} / \mathrm{mol}$, respectively.

Somewhat less is known concerning pyramidal inversion in $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{P}_{2} \mathrm{H}_{4}$. Experimentally, the barrier to pyramidal inversion of $\mathrm{N}_{2} \mathrm{H}_{4}$ is known to be in the range $5.0-7.5 \mathrm{kcal} /$ mol. ${ }^{11}$ This compares favorably with the 6.1 and $7.4 \mathrm{kcal} / \mathrm{mol}$ values computed for the single pyramidal inversion process by ab initio ${ }^{69}$ and CNDO/2 2^{12} procedures, respectively. There has been only one study ${ }^{6 f}$ of the rotation-inversion process in $\mathrm{N}_{2} \mathrm{H}_{4}$. Conformation 2 was calculated to be $11.99 \mathrm{kcal} / \mathrm{mol}$ more stable than conformation 3. Theoretical information

2

3
concerning pyramidal inversion in $\mathrm{P}_{2} \mathrm{H}_{4}$ is confined to one semiempirical estimate ${ }^{12}(27.9 \mathrm{kcal} / \mathrm{mol})$. Experimental data refer to the interconversion of a series of $d l$ and racemic 1,2diaryldiphosphines. ${ }^{13}$ The barriers associated with this process ($22.5-24.0 \mathrm{kcal} / \mathrm{mol}$) were found to be significantly lower than those observed for the analogous tertiary phosphines ${ }^{14}$ $(29.7-35.6 \mathrm{kcal} / \mathrm{mol})$. This observation has been interpreted ${ }^{13}$ in terms of $\mathrm{p} \pi-\mathrm{d} \pi$ stabilization of the inversional transition state of diphosphines.

The parent aminophosphine, $\mathrm{H}_{2} \mathrm{NPH}_{2}$, is as yet unknown. Its synthesis remains one of the challenges of inorganic chemistry. However, a significant number of experimental results have been accumulated regarding the stereochemistry

Table I. Optimized Geometries, Total Energies, and Barriers Pertaining to the Pyramidal Inversion Process in PH_{3}

		total energy, au	inversion barrier, $\mathrm{kcal} / \mathrm{mol}$	
conformation	$r_{\text {P-H }}, \AA$	$\angle \mathrm{XPH},{ }^{a} \mathrm{deg}$	and	
pyramidal b	1.378	122.63	-338.63641	61.35
planar b	1.345	90	-338.53867	
pyramidal $^{c, d}$	1.378	122.63	-342.02184	33.41
planar $^{c, d}$	1.345	90	-341.96862	
pyramidal $^{d, e}$	1.383	95	-342.02569	34.61
planar $^{d, e}$	1.345	90	-341.97053	

a X was placed on the Z axis as a dummy atom; it represents the lone pair axis. ${ }^{b}$ STO-3G calculations. ${ }^{c} 4-31 \mathrm{G}$ (STO-3G) calculations. ${ }^{d}$ See text for discussion. ${ }^{e}$ 4-3IG (4-3IG) calculations.
of substituted aminophosphines. Several structural studies ${ }^{15}$ of acyclic aminophosphines indicate that these compounds possess approximately trigonal planar geometry at nitrogen. Interestingly, the ground-state conformation of acyclic aminophosphines is isostructural with 2, the "bisected" inversional transition state of $\mathrm{A}_{2} \mathrm{H}_{4}$ molecules.

The experimentally observable $\mathrm{N}-\mathrm{P}$ torsional barriers of acyclic aminophosphines range from 8 to $10 \mathrm{kcal} / \mathrm{mol},{ }^{4}$ although there are some examples of larger barriers for both cyclic ${ }^{16}$ and acyclic ${ }^{17}$ species. Ab initio MO calculations on $\mathrm{H}_{2} \mathrm{NPH}_{2}$ indicate that the ground-state geometry corresponds to $2 ;{ }^{18}$ however, in the torsional transition state, $\mathbf{4}$, the nitrogen

4
geometry changes from trigonal planar to pyramidal. ${ }^{19}$ The phosphorus pyramidal inversion barrier of $\mathrm{H}_{2} \mathrm{NPH}_{2}$ is computed to be larger than that of $\mathrm{PH}_{3} .{ }^{20}$
The specific purposes of the present article are: (1) to examine the rotation-inversion behavior of $\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{P}_{2} \mathrm{H}_{4}$, and $\mathrm{H}_{2} \mathrm{NPH}_{2}$, utilizing ab initio MO methods; (2) to analyze the results of (1) by means of quantitative perturbational molecular orbital (PMO) theory; ${ }^{21}$ (3) using PMO theory, ${ }^{21}$ to investigate the factors responsible for the relative magnitudes of the pyramidal inversion barriers in $\mathrm{A}_{2} \mathrm{H}_{4}$ molecules ($\mathrm{A}=$ N, P) compared to those of simple AH_{3} systems.

Computational Details

All computations were performed on the Burroughs B6700 computer of Queen's University, using a locally modified version of the GAUSSIAN 70 program system. A preliminary examination of the three molecules at the STO-3G and 4-31G levels with either standard or partially optimized geometrical parameters revealed that rotation in the ground states of diphosphine and aminophosphine was reasonably well reproduced at the STO-3G level. However, at this level of computation, the anti conformation of hydrazine was found to be more stable than the gauche ($\phi=90^{\circ}$) conformation, in disagreement with the experimental observations. ${ }^{5}$ The same result was obtained when the geometries of the gauche and anti conformations of hydrazine were fully optimized by the FORCE method. ${ }^{22}$ A proper ordering of the relative stabilities of the two conformations was achieved by recomputation of the energies at the 4-31G level using the STO-3G optimized geometries (i.e., $4-31 \mathrm{G}$ (STO-3G)). Since it was desired to provide the PMO analysis for all three molecules at a common computational level, all subsequent work was performed by the $4-31 \mathrm{G}$ (STO-3G) procedure. This decision in turn introduced an additional problem in the case of hydrazine, since it is well established ${ }^{23}$ that pyramidal inversion barriers associated with first-row atoms are underestimated considerably at the 4-31G level. For example, the pyramidal inversion barrier

Table II. Rotational and Pyramidal Inversion Barrier Data Computed for $\mathrm{P}_{2} \mathrm{H}_{4}$ by the 4-31G (STO-3G) Method ${ }^{a}$

conformation	$r_{\text {PP }}, \AA$	$\angle H P H$, deg	energy, au
$\mathbf{1}\left(\phi=0^{\circ}\right)$	2.200	95.75	-682.90208
$\mathbf{1}\left(\phi=60^{\circ}\right)$	2.180	95.64	-682.90665
$\mathbf{1}\left(\phi=76^{\circ}\right)$	2.179	95.68	-682.90715
$\mathbf{1}\left(\phi=90^{\circ}\right)$	2.181	95.55	-682.90707
$\mathbf{1}\left(\phi=120^{\circ}\right)$	2.180	95.00	-682.90675
$\mathbf{1}\left(\phi=180^{\circ}\right)$	2.179	94.69	-682.90712
$\mathbf{2}$	2.096	96.07	-682.85857
$\mathbf{3}$	2.136	94.74	-682.84971

${ }^{a} r_{\mathrm{PH}}=1.378$ (pyramidal) and $1.345 \AA$ (planar) taken from the corresponding optimized PH_{3} geometries (Table I).
computed for PH_{3} in the present work by the 4-31G (STO-3G) method ($33.41 \mathrm{kcal} / \mathrm{mol}$; see Table I) agrees well both with a $4-31 \mathrm{G}(4-31 \mathrm{G})$ calculation ($34.61 \mathrm{kcal} / \mathrm{mol}$) and also with calculations performed using other basis sets. ${ }^{24}$ In the case of ammonia, ${ }^{23}$ the $4-31 \mathrm{G}$ (STO-3G) method gives a negative inversion barrier. Consequently, a PMO analysis is unreasonable for the inversion process itself, ${ }^{25}$ but rotation in the ground state $\mathbf{1}$, a distinction between 2 and $\mathbf{3}$, and substituent effects upon the inversion barriers remained accessible.

The program for the computation of orbital interactions is implemented by specification of a particular fragmentation mode following the SCF calculation at a particular geometry of interest; the fragment orbitals, and all of the properties of these orbitals required for the computation of orbital interactions, are then provided by the program. The two-orbital two-electron and two-orbital four-electron interaction energies are calculated using eq 1 and 2 , respectively, where $e_{i}{ }^{0}$ and $e_{j}{ }^{0}$ are the energies of the fragment orbitals $\phi_{i}{ }^{0}$ and $\phi_{j}{ }^{0}$, and $\dot{S}_{i j}$ and $\Delta_{i j}$ are the overlap integral and the interaction matrix element between the fragment orbitals, respectively. ${ }^{21}$

$$
\begin{gather*}
\Delta e_{i j}=2\left(\Delta_{i j}-e_{i}^{0} \tilde{S}_{i j}\right)^{2} /\left(e_{i}{ }^{0}-e_{j}^{0}\right) \tag{1}\\
\Delta e_{i j}=2 \tilde{S}_{i j}\left[-2 \Delta_{i j}+\left(e_{i}^{0}+e_{j}^{0}\right) \tilde{S}_{i j}\right] /\left(1-\tilde{S}_{i j}^{2}\right) \tag{2}
\end{gather*}
$$

Results and Discussion

A. Ab Initio Calculations. 1. $\mathbf{P}_{2} \mathrm{H}_{4}$. With one exception, ${ }^{10 b}$ previous calculations of the torsional process in $\mathrm{P}_{2} \mathrm{H}_{4}$ have indicated that the gauche conformation is the most stable. Wagner's study ${ }^{10 \mathrm{~b}}$ suggested that the anti conformation is insignificantly more stable than the gauche by $\sim 0.1 \mathrm{kcal} / \mathrm{mol}$. According to the present 4-31G (STO-3G) calculations, the energies of the gauche and anti conformations are essentially identical (Table II). The computed rotational potential function is rather flat in the $50-310^{\circ}$ dihedral angle range as can be seen in Figure 1. This fact has been commented upon previously by Ahlrichs et al. ${ }^{10 \mathrm{~d}}$ Our computed gauche-anti energy difference of $0.232 \mathrm{kcal} / \mathrm{mol}$ is slightly lower than previous estimates; however, the gauche-syn energy difference of 3.16 $\mathrm{kcal} / \mathrm{mol}$ is in reasonable accord with the values 4.02-4.85 which are available in the literature. ${ }^{10 d, e}$

Pyramidal inversion in $\mathrm{P}_{2} \mathrm{H}_{4}$ may proceed via transition state 2 or transition state $3 .{ }^{26}$ Since the calculated energies of $\mathbf{2}$ and 3 are 30.44 and $36.55 \mathrm{kcal} / \mathrm{mol}$, respectively, above that of the gauche conformation, which is the global minimum of the rotation-inversion surface, $\mathbf{2}$ is the transition state for pyramidal inversion in $\mathrm{P}_{2} \mathrm{H}_{4}$. It is noteworthy that this 30.44 $\mathrm{kcal} / \mathrm{mol}$ barrier to pyramidal inversion in $\mathrm{P}_{2} \mathrm{H}_{4}$ is lower than the $33.4 \mathrm{kcal} / \mathrm{mol}$ barrier computed for PH_{3} by the same procedure. This result is consistent with the experimental observations of Lambert and his co-workers. ${ }^{13,27}$
2. $\mathbf{N}_{2} \mathrm{H}_{4}$. In view of the previous extensive computations on $\mathrm{N}_{2} \mathrm{H}_{4},{ }^{6}$ and the problems noted under Computational Details, only the gauche $\left(1, \phi=91.5^{\circ}\right)$ and anti $\left(1, \phi=180^{\circ}\right)$

Figure 1. Rotational potential function for $\mathrm{P}_{2} \mathrm{H}_{4}$ computed by the 4-3IG (STO-3G) procedure. Except for the $\mathrm{P}-\mathrm{H}$ bond lengths (see text) each of the points shown in this figure corresponds to a fully optimized geometry at the STO-3G level.
ground-state geometries were investigated, together with conformations 2 and 3 . In each case the geometry was optimized fully, and the results are summarized in Table III.

The gauche conformation is calculated to be $0.40 \mathrm{kcal} / \mathrm{mol}$ more stable than the anti. As in the case of $\mathrm{P}_{2} \mathrm{H}_{4}$, conformation $\mathbf{2}$ is favored over conformation $\mathbf{3}$, in this case by $11.48 \mathrm{kcal} /$ mol . The same trend has been noted in another set of ab initio calculations ${ }^{6 f}$ in which it was found that the pyramidal inversion barrier computed for $\mathrm{N}_{2} \mathrm{H}_{4}(6.1 \mathrm{kcal} / \mathrm{mol})$ is slightly higher than that computed for $\mathrm{NH}_{3}(6.0 \mathrm{kcal} / \mathrm{mol})$.

Taking into account all of the information now available, ${ }^{6,10}$ it appears that the rotation-inversion behavior of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{P}_{2} \mathrm{H}_{4}$ may be summarized as follows:
(1) Only the gauche conformation is a minimum on the rotational curve of $\mathrm{N}_{2} \mathrm{H}_{4}$.
(2) The rotational curve of $\mathrm{P}_{2} \mathrm{H}_{4}$ possesses minima corresponding to both gauche and anti conformations.
(3) The pyramidal inversion barrier of $\mathrm{P}_{2} \mathrm{H}_{4}$ is significantly lower than that of PH_{3}.
(4) The pyramidal inversion barrier of $\mathrm{N}_{2} \mathrm{H}_{4}$ is slightly higher than that of NH_{3}.
(5) The "bisected" conformation, 2 , is the transition state for pyramidal inversion in both $\mathrm{P}_{2} \mathrm{H}_{4}$ and $\mathrm{N}_{2} \mathrm{H}_{4}$.
3. $\mathbf{H}_{2} \mathbf{N P H}_{2}$. In our earlier ab initio calculations on $\mathrm{H}_{2} \mathrm{NPH}_{2},{ }^{18-20}$ the POLYATOM program system was employed, because it was of interest to determine the effect of d-type functions upon the results. It was found, using a double ζ quality basis set containing two sets of d-type functions on phosphorus, one set of d-type functions on nitrogen, and one set of p-type functions on each of the four hydrogens, that the ground state of this molecule has structure 5 . The compound

has the "bisected" geometry ($\phi=90^{\circ}$) and an N-P bond length of $1.68 \AA$ under the restrictions that $\angle \mathrm{HPH}=\angle \mathrm{HPN}$, $\angle \mathrm{HNH}=\angle \mathrm{HNP}$, and the $\mathrm{N}-\mathrm{H}$ and $\mathrm{P}-\mathrm{H}$ bond lengths are 1.02 and $1.42 \AA$, respectively. The geometry at nitrogen remains trigonal planar even when the polarization functions are removed. This result is consistent with several structure determinations, ${ }^{15}$ and with dynamic NMR^{4} and photoelectron spectroscopic measurements ${ }^{28}$ on substituted aminophosphines.

In a subsequent $\mathrm{CNDO} / 2$ calculation on $\mathrm{H}_{2} \mathrm{NPH}_{2}$, it has been found that the nitrogen geometry is slightly nonpla-

Table III. Optimized Geometries and Total Energies Computed for $\mathrm{N}_{2} \mathrm{H}_{4}$ by the $4-3 \mathrm{IG}$ (STO-3G) Method

conformation	$r_{\mathrm{N}-\mathrm{H}}, \AA$	$r_{\mathrm{N}-\mathrm{N},} \AA$	$\angle \mathrm{HNH}, \mathrm{deg}$	energy, au
$\mathbf{1}\left(\phi=90^{\circ}\right)$	1.032	1.471	105.61	-110.99230^{a}
$\mathbf{1}\left(\phi=180^{\circ}\right)$	1.032	1.472	103.37	-110.99168^{b}
$\mathbf{2}$	1.036^{c}	1.423	105.45	-110.99568
$\mathbf{3}$	0.996^{d}			
	1.040^{c}	1.464	102.47	-110.97739

" At the 4-31G* (STO-3G) level, the computed total energy is -111.05498 au. ${ }^{6}$ At the 4-31G* (STO-3G) level, the computed total energy is -111.05446 au. ${ }^{\text {c }}$ Refers to the pyramidal NH_{2} group. ${ }^{d}$ Refers to the planar NH_{2} group.
nar. ${ }^{29.30}$ It was suggested ${ }^{29}$ that the difference between the CNDO/ 2 and POLYATOM calculations resulted from our restriction that $\angle \mathrm{HNH}=\angle \mathrm{HNP}$. To check this point, STO-3G calculations have now been performed on $\mathrm{H}_{2} \mathrm{NPH}_{2}$ with retention of the restriction that $\angle \mathrm{HNH}=\angle \mathrm{HNP}$. This has led to the geometry shown in 6 . Thus, as noted earlier, ${ }^{23,32}$ the poorer quality STO-3G basis set tends to overemphasize nitrogen pyramidality regardless of the manner in which the HNH and HNP angles are treated. We believe that this comment also applies to the CNDO/2 calculations. ${ }^{29}$ In any event, the salient point is that the NH_{2} group is significantly more planar in $\mathrm{H}_{2} \mathrm{NPH}_{2}$ than in NH_{3} or $\mathrm{N}_{2} \mathrm{H}_{4}$. For the PMO analyses of the present work, the $4-31 \mathrm{G}$ wave functions of conformations 2 and 4 of $\mathrm{H}_{2} \mathrm{NPH}_{2}$ were obtained, using the geometries of the earlier POLYATOM calculations. In addition, 7, the transition state for pyramidal inversion at phosphorus, was examined, using the $\mathrm{N}-\mathrm{H}, \mathrm{P}-\mathrm{H}$, and $\mathrm{N}-\mathrm{P}$ bond lengths of 2. The resulting total energies follow: 2, -396.976 40 au ; 4, $-396.95765 \mathrm{au} ; 7,-396.91515 \mathrm{au}$. Thus, at the 4 -31G

7
level, the rotational barrier in aminophosphine is calculated to be $11.77 \mathrm{kcal} / \mathrm{mol}$, and the barrier to pyramidal inversion at phosphorus is calculated to be $38.45 \mathrm{kcal} / \mathrm{mol}$, i.e., higher than that of PH_{3}, as observed earlier, ${ }^{20}$ in the POLYATOM calculations.
B. PMO Analyses. The PMO analysis of an $\mathrm{A}_{2} \mathrm{H}_{4}$ molecule consists of the fragmentation $\mathrm{H}_{2} \mathrm{~A} \cdots \mathrm{AH}_{2}$, and computation of the interaction energies associated with the orbitals of the AH_{2} fragments that contribute to the highest occupied molecular orbital (HOMO) of the molecule. ${ }^{21}$ The analysis of a molecule $\mathrm{H}_{2} \mathrm{ABH} \mathrm{H}_{2}$ proceeds via the fragmentation $\mathrm{H}_{2} \mathrm{~A} \cdots \mathrm{BH}_{2}$. For NH_{2} and PH_{2} fragments, the orbitals of interest are the nitrogen or phosphorus nonbonding electron pairs (n), the σ^{*} NH_{2} and PH_{2} orbitals, and the π and π^{*}-type NH_{2} and PH_{2} orbitals. For $\mathrm{NH}_{2}, \sigma^{*}$ is the lowest lying unoccupied orbital; for PH_{2}, π^{*} lies lower than σ^{*}. These are shown in Figure 2 for a general AH_{2} or BH_{2} fragment having pyramidal and planar configurations at the central atoms. As described elsewhere, ${ }^{21,33}$ the computer program for the PMO analysis provides these fragment orbitals and their energies, together with the overlap integrals and matrix interaction elements between the fragments, and the electron occupancies of the fragments. The interaction energies are then calculated using eq 1 and 2 .

The interaction diagram associated with the gauche ground-state conformation of $\mathrm{A}_{2} \mathrm{H}_{4}$ is shown in Figure 3. The ($n-\pi$) destabilizing interaction 8 , the ($n-\pi^{*}$) stabilizing interaction 9, and the ($\mathrm{n}-\sigma^{*}$) stabilizing interaction 10, are

${ }^{n}{ }^{\prime}$ pyramidal

$\pi_{A H_{2}}$

Figure 2. The orbitals of an AH_{2} or BH_{2} fragment which contribute to the HOMO of $\mathrm{A}_{2} \mathrm{H}_{4}$ or $\mathrm{H}_{2} \mathrm{ABH}_{2}$ molecules, and which are used in the PMO analysis.
shown below; 9 and 10, are the molecular orbital counterparts of the hyperconjugative interaction shown in 11. The difference between the two descriptions is that, although charge transfer is implied by both descriptions, 11 envisages an electron

transfer from a lone pair to an adjacent $\mathrm{A}-\mathrm{H}$ bond, whereas 9 and $\mathbf{1 0}$ describe orbital interactions with an AH_{2} group.

The corresponding interaction diagram for the anti conformation of $\mathrm{A}_{2} \mathrm{H}_{4}$ is shown in Figure 4. In this case, there is one ($n-n$) destabilizing interaction (12), one ($\pi-\pi$) destabilizing interaction (13), two ($\pi-\pi^{*}$) stabilizing interactions (14), and two ($\mathrm{n}-\sigma^{*}$) stabilizing interactions (15).

12

14

13

15

The interaction diagrams for conformations corresponding to 2 and 3 are shown in Figures 5 and 6, respectively. The nonbonding n level lies higher in a planar AH_{2} or BH_{2} moiety, because there is no contribution from sorbitals. The π level of planar AH_{2} or BH_{2} lies lower, and the π^{*} level lies higher than in pyramidal AH_{2} or BH_{2}, because the overlap between carbon

Figure 3. Interaction diagram for the PMO analysis of the gauche ground-state geometry of $\mathrm{A}_{2} \mathrm{H}_{4}$.

Figure 4. Interaction diagram for the PMO a nalysis of the anti groundstate geometry of $\mathrm{A}_{2} \mathrm{H}_{4}$.

2 p and hydrogen Is orbitals is increased in the occupied orbital and is decreased in the unoccupied orbital as the HAH or HBH angle is increased. For similar reasons, the σ^{*} level is lower in planar AH_{2} or BH_{2} than in pyramidal AH_{2} or BH_{2}. To illustrate these points, the energies of the fragment orbitals of conformation 2 of hydrazine have been included in Figure 5.

Table IV summarizes the quantitative PMO analyses of the $4-31 \mathrm{G}$ wave functions of the various conformations of $\mathrm{N}_{2} \mathrm{H}_{4}$, $\mathrm{P}_{2} \mathrm{H}_{4}$, and $\mathrm{H}_{2} \mathrm{NPH}_{2}$ examined in this work. In Table V, the same data are used to provide the stabilizing, destabilizing, and total PMO interaction energies in the three molecules.
$\mathbf{N}_{2} \mathrm{H}_{4}$ and $\mathrm{P}_{2} \mathrm{H}_{4}$. All stabilizing and destabilizing interaction energies are larger in $\mathrm{N}_{2} \mathrm{H}_{4}$ than in $\mathrm{P}_{2} \mathrm{H}_{4}$. This is especially significant when the ($\mathrm{n}-\pi^{*}$) and ($\mathrm{n}-\sigma^{*}$) stabilizing interactions are considered. The energy gap in these cases is smaller for phosphorus than for nitrogen, because n_{P} lies higher than n_{N} and $\pi^{*}{ } \mathrm{PH}_{2}$ and $\sigma^{*} \mathrm{PH}_{2}$ lie lower than $\pi^{*}{ }_{\mathrm{NH}}^{2}$ and $\sigma^{*}{ }_{\mathrm{NH}_{2}}$. It is, therefore, clear that the differences between the two molecules are dominated by the larger overlap between fragments which exists at the shorter bond distance of hydrazine.

Figure 5. Interaction diagram for the PMO analysis of conformation 2 of an $\mathrm{A}_{2} \mathrm{H}_{4}$ or $\mathrm{H}_{2} \mathrm{ABH}_{2}$ molecule. The numbers refer to those computed for hydrazine at the 4-3IG level.

Table IV. Quantitative PMO Analyses of Hydrazine, Diphosphine, and A minophosphine

conformation	interaction	interaction energy, $\mathrm{kcal} / \mathrm{mol}$		
		$\mathrm{N}_{2} \mathrm{H}_{4}$	$\mathrm{P}_{2} \mathrm{H}_{4}$	$\mathrm{H}_{2} \mathrm{NPH}_{2}$
$1\left(\phi=91.5^{\circ}\right)$	$2(\mathrm{n}-\pi)$	61.60		
	$2\left(\mathrm{n}-\pi^{*}\right)$	-2.24		
	$2\left(\mathrm{n}-\sigma^{*}\right)$	-3.68		
$1\left(\phi=90^{\circ}\right)$	$2(\mathrm{n}-\pi)$		20.52	
	$2\left(\mathrm{n}-\pi^{*}\right)$		-1.80	
	$2\left(\mathrm{n}-\sigma^{*}\right)$		0.00	
$1\left(\phi=76^{\circ}\right)$	$2(\mathrm{n}-\pi)$		19.06	
	($\pi-\pi$)		0.29	
	($\mathrm{n}-\mathrm{n}$)		0.30	
	$2\left(\mathrm{n}-\pi^{*}\right.$)		-1.66	
	$2\left(\pi-\pi^{*}\right)$		-0.16	
	$2\left(\mathrm{n}-\sigma^{*}\right)$		-0.08	
$1\left(\phi=180^{\circ}\right)$	$(\mathrm{n}-\mathrm{n})$	46.04	15.84	
	($\pi-\pi$)	26.09	7.21	
	$2\left(\mathrm{n}-\sigma^{*}\right)$	-1.56	-0.40	
	$2\left(\pi-\pi^{*}\right)$	-2.46	-1.06	
2	$\left(\mathrm{n}_{\mathrm{pln}}-\pi_{\mathrm{pyr}}\right)$	46.61	20.12	$27.32{ }^{\text {a }}$
	($\mathrm{n}_{\text {py }}-\pi_{\text {pln }}$)	26.94	6.58	22.58
	$\left(n_{p l n}-\pi^{*}{ }_{\text {py }}\right.$)	-2.26	-3.26	-4.34
	$\left(\mathrm{n}_{\mathrm{pyr}}-\pi^{*} \mathrm{pln}^{\text {m }}\right.$)	-1.24	-2.62	-0.68
	$\left(\mathrm{n}_{\mathrm{pln}}-\sigma^{*}{ }_{\text {pyr }}\right.$)	0.00	0.00	0.00
	$\left(\mathrm{n}_{\mathrm{pyr}}-\sigma_{\mathrm{pln}}\right.$)	-5.96	-0.57	-3.85
3	($\mathrm{n}_{\mathrm{pln}}-\mathrm{n}_{\mathrm{pyr}}$)	45.84	21.93	
	($\pi_{\mathrm{p} / \mathrm{n}}-\pi_{\text {pyr }}$)	22.47	5.67	
	$\left(\pi_{\text {pln }}-\pi^{*}{ }_{\text {pyr }}\right)$	-0.44	-0.04	
	$\left(\pi_{\text {pyr }}-\pi^{*}{ }_{\text {pln }}\right)$	-0.99	-0.67	
	($\mathrm{n}_{\mathrm{pln}}-\sigma^{*}{ }_{\text {pyr }}$)	-0.13	-0.78	
	$\left(\mathrm{n}_{\mathrm{pyr}}-\sigma^{*}{ }_{\mathrm{pln}}\right.$)	-0.41	-0.36	
4	($\mathrm{n}-\mathrm{n}$)			40.24
	($\pi-\pi$)			17.42
	$2\left(\mathrm{n}-\sigma^{*}\right)$			$-2.26{ }^{\text {b }}$
	$2\left(\pi-\pi^{*}\right)$			$-1.73 \mathrm{c}$
7	$\left(\mathrm{n}_{\mathrm{N}}-\pi_{\mathrm{PH}_{2}}\right)$			19.36
	$\left(\mathrm{n}_{\mathrm{P}}-\pi_{\mathrm{NH}_{2}}\right)$			35.36
	$\left(\mathrm{n}_{\mathrm{N}}-\pi^{*} \mathrm{PH}_{2}\right)$			-6.39
	$\left(\mathrm{nP}_{\mathrm{P}}-\mathrm{T}^{*} \mathrm{NH}_{2}\right)$			-1.69

${ }^{a}$ For aminophosphine, the subscripts pyr (pyramidal) and pln (planar) refer to phosphorus and nitrogen, respectively. ${ }^{b}$ This is the sum of $\left(n_{\mathrm{P}}-\sigma^{*} \mathrm{NH}_{2}\right)(-1.04 \mathrm{kcal} / \mathrm{mol})$ and $\left(\mathrm{n}_{\mathrm{N}}-\sigma^{*} \mathrm{PH}_{2}\right)(-1.22$ $\mathrm{kcal} / \mathrm{mol}){ }^{c}$ This is the sum of $\left(\pi_{\mathrm{PH}_{2}}-\pi^{*} \mathrm{NH}_{2}\right)(-0.61 \mathrm{kcal} / \mathrm{mol})$ and $\left(\pi_{\mathrm{NH}_{2}}-\pi^{*} \mathrm{PH}_{2}\right)(-1.12 \mathrm{kcal} / \mathrm{mol})$.

\quad planar
AH_{2} or BH_{2}
pyramidal
AH_{2} or BH_{2}
Figure 6. Interaction diagram for the PMO analysis of conformation 3 of an $\mathrm{A}_{2} \mathrm{H}_{4}$ or $\mathrm{H}_{2} \mathrm{ABH}_{2}$ molecule.

In both molecules, the gauche conformation is more stabilized, and less destabilized, than the anti conformation. Since the same trends were observed in the PMO analyses of the staggered and eclipsed conformations of ethane, ${ }^{21}$ it might be concluded that there is no fundamental difference between the conformational behavior of these $\mathrm{A}_{2} \mathrm{H}_{4}$ molecules, containing adjacent electron pairs, and that of $\mathrm{A}_{2} \mathrm{H}_{6}$ molecules. Indeed, this is the interpretation given by Mislow and his co-workers ${ }^{34}$ to the finding that tetraalkyldisilanes and tetraalkyldiphosphines exhibit similar static and dynamic stereochemical behavior. These workers therefore argue that there is no compelling need to invoke special electronic effects, e.g., the "gauche effect", ${ }^{35}$ to account for the conformational preferences of tetraalkyldiphosphines, which, instead, are "primarily dictated by the same steric factors as in the corresponding disilanes".

The arguments employed by Mislow and his co-workers are inappropriate for us because molecular orbital calculations do not provide a rigorous definition of "steric factors", as we have pointed our recently. ${ }^{36}$ However, it must be noted that, although the relative stabilities of the gauche conformations of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{P}_{2} \mathrm{H}_{4}$ have been reproduced, the PMO analysis has greatly overestimated the gauche preference in both cases. ${ }^{37}$ Thus, in its present form, the PMO method would have to be regarded as incomplete.

In their work on the Fourier component analysis of internal rotation in saturated molecules, Radom, Hehre, and Pople ${ }^{6 e}$ have proposed an interpretation of a rotational potential function in terms of onefold (V_{1}), twofold (V_{2}), and threefold $\left(V_{3}\right)$ Fourier components. The V_{2} term is interpreted by these workers as an orbital interaction term, and it may be positive or negative, depending on whether stabilizing or destabilizing mechanisms, respectively, are dominant. This interpretation suggests that the V_{2} term of a Fourier component analysis should correspond to our PMO interaction energies. It is interesting that the Fourier component analysis of hydrazine (shown in Figure 3b of ref 6e) indicates that V_{2} favors the gauche conformation over the anti by $7.92 \mathrm{kcal} / \mathrm{mol}$. The total energy difference is reduced by the V_{1} term of the Fourier component analysis, which favors the anti conformation by $7.42 \mathrm{kcal} / \mathrm{mol}$, and is interpreted in terms of dipole-dipole interactions between the lone pairs, such interactions being minimized in the anti conformation. The nonzero V_{1} term may,

Figure 7. The computed rotational potential of $\mathrm{P}_{2} \mathrm{H}_{4}$ at the 4-31G level (--), together with the two-electron stabilizing interactions (-O), the four-electron destabilizing interactions (-ロ-), the total PMO interaction term (-+一), and ϵ_{HO} мо/4.66 ($-\boldsymbol{\Delta}$) associated with this rotational potential.

Table V. Stabilizing, Destabilizing, and Total PMO Interaction Energies in Hydrazine, Diphosphine, and Aminophosphine

conformation	interaction energy, kcal/mol								
	stabilizing			destabilizing			total		
	$\mathrm{N}_{2} \mathrm{H}_{4}$	$\mathrm{P}_{2} \mathrm{H}_{4}$	$\mathrm{NH}_{2} \mathrm{PH}_{2}$	$\mathrm{N}_{2} \mathrm{H}_{4}$	$\mathrm{P}_{2} \mathrm{H}_{4}$	$\mathrm{NH}_{2} \mathrm{PH}_{2}$	$\mathrm{N}_{2} \mathrm{H}_{4}$	$\mathrm{P}_{2} \mathrm{H}_{4}$	$\mathrm{NH}_{2} \mathrm{PH}_{2}$
$1\left(\phi=90^{\circ}\right)$	$\begin{aligned} & -5.92 \\ & (-6.50)^{a, b} \end{aligned}$	$\begin{gathered} -1.80 \\ (-2.57) \end{gathered}$		$\begin{gathered} 61.60 \\ (43.78)^{b} \end{gathered}$	$\begin{gathered} 20.52 \\ (11.50) \end{gathered}$		$\begin{gathered} 55.68 \\ (37.28)^{b} \end{gathered}$	$\begin{aligned} & 18.72 \\ & (8.93) \end{aligned}$	
$1\left(\phi=76^{\circ}\right)$		-1.90			19.06			17.16	
$1\left(\phi=180^{\circ}\right)$	$\begin{gathered} -4.02 \\ (-4.07) \end{gathered}$	$\begin{gathered} -1.46 \\ (-2.47) \end{gathered}$		$\begin{gathered} 72.13 \\ (44.69) \end{gathered}$	$\begin{gathered} 23.05 \\ (10.77) \end{gathered}$		$\begin{gathered} 68.11 \\ (40.62) \end{gathered}$	$\begin{aligned} & 21.59 \\ & (8.30) \end{aligned}$	
2	$\begin{gathered} -9.46 \\ (-8.82) \end{gathered}$	-6.45	$\begin{gathered} -8.87 \\ (-12.06) \end{gathered}$	$\begin{gathered} 73.55 \\ (51.22) \end{gathered}$	26.70	$\begin{gathered} 49.90 \\ (30.00) \end{gathered}$	$\begin{gathered} 64.09 \\ (42.40) \end{gathered}$	20.25	$\begin{gathered} 41.03 \\ (17.94) \end{gathered}$
3	$\begin{gathered} -2.97 \\ (-2.01) \end{gathered}$	-1.85		$\begin{gathered} 68.31 \\ (44.64) \end{gathered}$	27.60		$\begin{gathered} 65.34 \\ (42.63) \end{gathered}$	25.75	
4			$\begin{gathered} -3.99 \\ (-6.72) \end{gathered}$			$\begin{gathered} 57.66 \\ (31.89) \end{gathered}$			$\begin{gathered} 53.67 \\ (25.17) \end{gathered}$
7			$\begin{array}{r} -8.08 \\ (-17.55) \\ \hline \end{array}$			$\begin{array}{r} 54.72 \\ (33.23) \\ \hline \end{array}$			$\begin{array}{r} 46.64 \\ (15.68) \\ \hline \end{array}$

${ }^{a}$ Numbers in parentheses were obtained at the STO-3G (STO-3G) level. ${ }^{b}$ At the 4-31G* (STO-3G) level, the stabilizing, destabilizing, and total interaction energies computed for $\mathrm{N}_{2} \mathrm{H}_{4}$ are $-5.07,68.06$, and $62.46 \mathrm{kcal} / \mathrm{mol}$ for the 90° conformation and $-3.18,74.25$, and 71.07 $\mathrm{kcal} / \mathrm{mol}$ for the 180° conformation.
therefore, reflect the noncancellation of $V_{\text {ee }}$ and V_{nn} discussed in footnote 37. However, the PMO analysis is still needed, because it provides a rather simple rationalization of why the conformation is gauche and not anti.

Turning to the PMO analysis itself, the data of Table V indicate that the gauche preferences of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{P}_{2} \mathrm{H}_{4}$ are primarily caused by a "minimization of repulsive forces" in both cases.

On the other hand, the preference for the bisected inversional transition state 2 over $\mathbf{3}$ is primarily the result of a "maximization of attractive forces". ${ }^{45}$ For $\mathrm{N}_{2} \mathrm{H}_{4}$, the largest

contributor to this stabilization is the "hyperconjugative interaction" 16, in which the pyramidal "lone pair" and an adjacent NH bond are antiperiplanar. The atomic charges shown in $\mathbf{1 6}$ should be noted. The stabilizing mechanism is different for $\mathrm{P}_{2} \mathrm{H}_{4}$. The largest contributors are now the ($\mathrm{n}-\pi^{*}$) interactions associated with both lone pairs.

The double energy difference $\left[\left(E_{1} \mathrm{~A}_{2} \mathrm{H}_{4}-E_{2} \mathrm{~A}_{2} \mathrm{H}_{4}\right)-\right.$ $\left(E_{\mathrm{pyr}}{ }^{\mathrm{AH}_{3}}-E_{\text {plan }}{ }^{\mathrm{AH}}{ }_{3}\right)$], where E_{i} is the relevant total interaction energy, gives in PMO terms the effect on the inversion barrier of the replacement of a hydrogen of AH_{3} by the group AH_{2}. The second term in this expansion is small, because of the absence of π-type orbital interactions in AH_{3}. The appropriate E_{1} for $\mathrm{N}_{2} \mathrm{H}_{4}$ refers to the gauche conformation, and that for $\mathrm{P}_{2} \mathrm{H}_{4}$ refers to the anti conformation, because this leads to the lowest energy difference between the ground state and the inversional transition state.

Using the data of Table V, this PMO analysis of substituent

Table VI. Energies of the NH_{2} and PH_{2} Fragment Orbitals of Conformation 2 of $\mathrm{H}_{2} \mathrm{NPH}_{2}$

orbital	energy, au	orbital	energy, au
$\pi^{*}{ }_{\mathrm{NH}_{2}}$	0.2989	n_{N}	-0.4254
$\sigma^{*} \mathrm{PH}_{2}$	0.1900	$\pi_{\mathrm{PH}_{2}}$	-0.5229
$\sigma^{*}{ }_{\mathrm{NH}_{2}}$	0.1833	$\pi_{\mathrm{NH}_{2}}$	-0.6226
n_{P}	-0.3817		

effects predicts that $\mathrm{N}_{2} \mathrm{H}_{4}$ should have a higher inversion barrier than NH_{3} by $8.41 \mathrm{kcal} / \mathrm{mol}$, and that $\mathrm{P}_{2} \mathrm{H}_{4}$ should have a lower inversion barrier than PH_{3} by $1.34 \mathrm{kcal} / \mathrm{mol}$. In both $\mathrm{A}_{2} \mathrm{H}_{4}$ molecules, the inversional transition state 2 has greater stabilization and also greater destabilization than the ground state $\mathbf{1}$. However, in $\mathrm{N}_{2} \mathrm{H}_{4}$ the destabilization in $\mathbf{2}$ dominates, leading to the higher barrier than NH_{3}; and in $\mathrm{P}_{2} \mathrm{H}_{4}$ the stabilization in 2 dominates, leading to the lower barrier than PH_{3}.

A final point of interest is that the quantitative PMO analysis provides insight into the factors responsible for the lower energy of $1\left(\phi=76^{\circ}\right)$ than $1\left(\phi=90^{\circ}\right)$ in $\mathrm{P}_{2} \mathrm{H}_{4}$. As the dihedral angle is decreased from 90°, the ($n-\pi$) and ($n-\pi^{*}$) interactions decrease, because the overlap between the fragments decreases. At the same time, contributions appear from ($n-n$), $(\pi-\pi)$, and $\left(\pi-\pi^{*}\right)$. This can be seen in Table V. According to these data, the decreased destabilization associated with the decreased ($n-\pi$) interaction is not quite compensated by the appearance of ($\mathrm{n}-\mathrm{n}$) and ($\pi-\pi$), and this is mainly responsible for the nonorthogonal geometry. In contrast, $\mathrm{N}_{2} \mathrm{H}_{4}$ prefers a near- 90° dihedral angle because in this case the ($n-n$) destabilizing interaction, which appears when the molecule is rotated away from 90°, is the largest single contributor to the interaction energy. These views are consistent with the conclusion already reached, that the ground states of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $\mathrm{P}_{2} \mathrm{H}_{4}$ are best understood in terms of a minimization of repulsive forces. ${ }^{45}$
$\mathrm{H}_{2} \mathbf{N P H}_{2}$. The difference in the total interaction energies of $\mathbf{2}$ and $\mathbf{4}$, shown in Table V ($12.64 \mathrm{kcal} / \mathrm{mol}$), compares favorably with the calculated total energy difference of 11.77 $\mathrm{kcal} / \mathrm{mol}$. The PMO energy difference provides the rotational barrier of the molecule; it also accounts for the effect on the pyramidal inversion barrier associated with the replacement of a hydrogen of NH_{3} by a PH_{2} group, viz., a substantial decrease. The difference in the total interaction energies of $\mathbf{2}$ and 7 corresponds to the effect on the pyramidal inversion barrier of PH_{3} caused by the replacement of one hydrogen by an NH_{2} group. The increase is $5.61 \mathrm{kcal} / \mathrm{mol}$, which again compares favorably with the $5.05 \mathrm{kcal} / \mathrm{mol}$ increase in the barrier provided by the total energies. Thus the quantitative PMO analysis of $\mathrm{H}_{2} \mathrm{NPH}_{2}$ is in almost quantitative agreement with the static and dynamic stereochemistry that is obtained for this molecule in the total energy calculations.

Examination of the stabilizing interactions in $\mathbf{2}$ reveals a net charge transfer from phosphorus to nitrogen, because ($\mathrm{n}_{\mathrm{P}}-$ $\left.\sigma^{*} \mathrm{NH}_{2}\right)+\left(\mathrm{n}_{\mathrm{P}}-\pi^{*} \mathrm{NH}_{2}\right)$ is larger numerically than ($\mathrm{n}_{\mathrm{N}}-$ $\left.\sigma^{*} \mathrm{PH}_{2}\right)+\left(\mathrm{n}_{\mathrm{V}}-\pi^{*} \mathrm{PH}_{2}\right)$. This is consistent with our earlier observation, ${ }^{18}$ based upon a Mulliken population analysis. However, as already noted, it is the destabilizing interactions which are mainly responsible for the conformational preference of $\mathrm{H}_{2} \mathrm{NPH}_{2}$. This means that our heuristic interpretation of the lower nitrogen inversion barrier and the higher phosphorus inversion barrier in terms of electron release from PH_{2} to $\mathrm{NH}_{2}{ }^{18}$ and electron withdrawal by NH_{2} from $\mathrm{PH}_{2}{ }^{20}$ is not supported by the PMO analysis. Nevertheless, relationships between ligand electronegativity and the magnitudes of pyramidal inversion barriers ${ }^{46}$ are quite compatible with the present work, although not in the manner that we had supposed. Electronegativity effects enter into the PMO analysis
in the different energies of NH_{2} and PH_{2} group orbitals. Except for σ^{*}, all of the occupied PH_{2} orbitals lie higher, and all of the unoccupied PH_{2} orbitals lie lower, than those of NH_{2}. This is shown in Table VI, which lists the energies of the NH_{2} and PH_{2} fragment orbitals of conformation 2.

Acknowledgments. The authors are grateful to the National Science Foundation (Grant CHE 76-10331), the Robert A. Welch Foundation, the National Research Council of Canada, NATO, and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for financial support. We also thank Dr. Daniel Kost and Miss Patricia M. Purves for assistance with the computations.

References and Notes

(1) (a) The University of Texas at Austin; (b) Queen's University; (c) North Carolina State University; (d) part 10 in the series Molecular Orbitals from Group Orbitals.
(2) John Simon Guggenheim Fellow, 1976-1977.
(3) For a general review of $A_{2} X_{4}$ molecules, see J. R. Durig, B. M. Gimarc, and J. D. Odom in "Vibrational Spectra and Structure", Vol. II, J. R. Durig, Ed., Marcel Dekker, New York, 1973.
(4) A. H. Cowley, M. J. S. Dewar, W. R. Jackson, and W. B. Jennings, J. Am. Chem. Soc., 92, 5206 (1970).
(5) (a) A. Yamaguchi, I. Ichishima, T. Shimanouchi, and S. Mizushima, J. Chem. Phys., 31, 843 (1959); (b) Y. Morina, T. ljima, and Y. Murata, Bull. Chem. Soc. Jpn., 33, 46 (1960); (c) T. Kasuya and T. Kojima, J. Phys. Soc. Jpn., 18, 364 (1963).
(6) (a) A. Veillard, Theor. Chim. Acta, 5, 413 (1966); (b) L. Pedersen and K. Morokuma, J. Chem. Phys., 46, 3941 (1967); (c) W. H. Fink, D. C. Pan, and L. C. Allen, ibid., 47, 895 (1967); (d) E. L. Wagner, Theor. Chim. Acta, 23, 115 (1971); (e) L. Radom, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc., 94, 2371 (1972); (f) J. O. Jarvie and A. Rauk, Can. J. Chem., 52, 2785 (1974); (g) J. Jarvie, A. Rauk, and C. K. Edmiston, ibid., 52, 2778 (1976); (h) N. M. Vitkovskaya, O. Yu. Dolgunicheva, Yu. L. Frolov, V. V. Keiko, and M. G. Voronkov, Dokl, Akad. Nauk SSSR, 235, 843 (1977).
(7) J. R. Durig, L. A. Carreira, and J. D. Odom, J. Am. Chem. Soc., 96, 2688 (1974).
(8) (a) J. D. Odom, C. J. Wurrey, L. A. Carreira, and J. R. Durig, Inorg. Chem., 14, 2849 (1975); (b) M. Baudler, M. Vogel-Raudschus, and J. Dobbers, Z. Anorg. Allg. Chem., 347, 78 (1977).
(9) B. Beagley, A. R. Conrad, J. M. Freeman, J. J. Monoghan, and B. G. Norton, J. Mol. Struct., 11, 371 (1972).
(10) (a) J. B. Robert, H. Marshmann, and J. R. Van Wazer, Chem. Commun., 356 (1970); (b) E. L. Wagner, Theor. Chim. Acta, 23, 127 (1971); (c) I. Absar, J. B. Robert, and J. R. Van Wazer, Trans. Faraday Soc., 68, 799 (1972); (d) R. Ahlrichs, R. Heinzmann, and C. Zirz, Theor. Chim. Acta, 43, 29 (1976); (e) J. P. Albrand, H. Faucher, D. Gagnaire, and J. B. Robert, Chem. Phys. Lett., 38, 521 (1976).
(11) (a) Y. Hamada, A. Y. Hirakawa, K. Tamagake, and M. Tsuboi, J. Mol. Spectrosc., 35, 420 (1970); (b) M. D. Harmony and P. A. Baron, J. Mol. Struct., 38, 1 (1977).
(12) A. Rauk, J.D. Andose, W. G. Frick, R. Tang, and K. Mislow, J. Am. Chem. Soc., 93, 6507 (1971).
(13) (a) J. B. Lambert and D. C. Mueller, J. Am. Chem. Soc., 88, 3669 (1966); (b) J. B. Lambert, G. F. Jackson III, and D. C. Mueller, Ibid., 90, 6401 (1968); (c) ibid., 92, 3093 (1970).
(14) R. D. Baechler and K. Mislow, J. Am. Chem. Soc., 92, 3090 (1970).
(15) (a) E. D. Morris and C. E. Nordman, Inorg. Chem., 8, 1673 (1969); (b) L. V. Vilkov, L. S. Khaikin, and V. V. Evdokimov, Zh. Strukt. Khim., 10, 1101 (1969); (c) A. H. Brittain, J. E. Smith, D. L. Lee, K. Cohn, and R. H. Schwendeman, J. Am. Chem. Soc., 93, 6772 (1971); (d) P. Forti, D. Damiami, and P. G. Favero, ibld., 95, 756 (1973).
(16) (a) E. Niecke, W. Flick, and S. Pohl, Angew. Chem., Int. Ed. Engl., 15, 309 (1976); (b) G. Bulloch, R. Keat, and D. G. Thompson, J. Chem. Soc., Dalton Trans., 1044 (1977).
(17) (a) R. H. Neilson, R.C.-Y. Lee, and A. H. Cowley, J. Am. Chem. Soc., 97, 5302 (1975); (b) Inorg. Chem., 16, 1455 (1977).
(18) I. G. Csizmadia, A. H. Cowley, M. W. Taylor, L. M. Tel, and S. Wolfe, J. Chem. Soc., Chem. Commun., 1147 (1972).
(19) A. H. Cowley, M. W. Taylor, M.-H. Whangbo, and S. Wolfe, J. Chem. Soc., Chem. Commun., 838 (1976).
(20) I. G. Csizmadia, A. H. Cowley, M. W. Taylor, and S. Wolfe, J. Chem. Soc., Chem. Commun., 432 (1974).
(21) M.-H. Whangbo, H. B. Schlegel, and S. Wolfe. J. Am. Chem. Soc., 99, 1296 (1977). Other partitioning schemes have also been suggested. See, e.g., N. C. Baird, Theor. Chim. Acta, 16, 239 (1970); C. Müller, A. Schweig, and H. Yermeer, Angew. Chem. Int. Ed. Engl., 13, 273 (1974); P. W. Payne, J. Am. Chem. Soc., 99, 3787 (1977); F. Bernardi, A. Bottoni, N. D. Epiotis, and M. Guerra, ibid., 100, 6018 (1978).
(22) H. B. Schlegel, Ph. D. Thesis, Queen's University, 1975.
(23) J. P. Colpa, H. B. Schlegel, and S. Wolfe, Can. J. Chem., 54, 526 (1976); W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, J. Am. Chem. Soc., 93, 6377 (1971).
(24) (a) J. M. Lehn and B. Munsch, J. Chem. Soc., Chem. Commun., 1327 (1969); (b) L. S. Aarons, M. F. Guest, M. B. Hall, and I. H. Hillier, J. Chem. Soc., Faraday Trans. 2. 69, 643 (1973); (c) J. M. Lehn and B. Munsch, Mol. Phys., 23, 91 (1972).
(25) For the PMO treatment of pyramidal inversion, see: C. C. Levin, J. Am. Chem. Soc., 97, 5649 (1975); W. Cherry, N. D. Epiotis, and W. T. Borden. Acc. Chem. Res., 10, 167 (1977).
(26) S. Wolfe, H. B. Schlegel, I. G. Csizmadia, and F. Bernardi, J. Am. Chem. Soc., 97, 2020 (1975).
(27) It should be noted that reservations have been expressed concerning the interpretation of these experimental results. See: H. C. E. McFarlane and W. McFarlane, J. Chem. Soc., Chem. Commun., 886 (1975); R. D. Baechler, J. P. Casey, R. J. Cook, G. H. Senkler, Jr., and K. Mislow, J. Am. Chem. Soc., 94, 2859 (1972). The present theoretical results, while not refuting these criticisms, do tend to support the general validity of the conclusions of Lambert et al. ${ }^{13}$
(28) A. H. Cowley, M. J. S. Dewar, D. W. Goodman, and J. R. Schweiger, J. Am. Chem. Soc., 95, 6506 (1973); A. H. Cowley, M. J. S. Dewar, J. W. Gilje, D. W. Goodman, and J. R. Schweiger, J. Chem. Soc., Chem. Commun., 340 (1974).
(29) M. Berthelat, R. Mathis, J.-F. Labarre, and M. Mathis, C. R. Acad. Sci., Ser. C, 645 (1975); M. Berthelat, R. Mathis, and F. Mathis, J. Chern. Soc., Chem. Commun., 615 (1977).
(30) A more recent CNDO/2 calculation of Borisov ${ }^{31}$ yields not only a pyramidal geometry at nitrogen, but also an anti ground state structure (1, $\phi=180^{\circ}$) for $\mathrm{H}_{2} \mathrm{NPH}_{2}$. This does not agree with either the ab initio ${ }^{18}$ or the earlier CNDO/2 result; it is also incompatible with the experimental data on substituted aminophosphines.
(31) E. V. Borisov, Zh. Fiz, Khim., 51, 1322 (1977).
(32) M.-H. Whangbo and S. Wolfe, Can. J. Chem., 54, 949 (1976).
(33) D. Kost, D. J. Mitchell, H. B. Schlegel, and S. Wolfe, Can. J. Chem., 57, 729 (1979).
(34) S. G. Baxter, D. A. Dougherty, J. P. Hummel, J. F. Blount, and K. Mislow, J. Am. Chem. Soc., 100, 7795 (1978).
(35) S. Wolfe, Acc. Chem. Res., 5, 102 (1972).
(36) S. Wolfe, D. J. Mitchell, and M.-H. Whangbo, J. Am. Chem. Soc., 100, 1936 (1978).
(37) In Hartree-Fock SCF theory, the total energy, E_{T}, of a closed-shell system is given by $E_{\mathrm{T}}=\left(2 \Sigma_{k} \epsilon_{k}-V_{e e}+V_{n n}\right)$, where the ϵ_{k} 's are the canonical orbital energies, $V_{\text {ee }}$ is the electron-electron repulsion energy, and V_{nn} is the nuclear-nuclear repulsion energy. ${ }^{38}$ We now speculate that the earlier successes of the PMO method of conformational analysis, when applied to hydrocarbon molecules, ${ }^{39}$ were the result of a fortuitous conformational invariance of $\left(-V_{\text {ee }}+V_{n n}\right)^{40,41}$
(38) P. K. Mehrotra and R. Hoffmann, Theor. Chim. Acta, 48, 301 (1978).
(39) J. P. Lowe, J. Am. Chem. Soc., 96, 3759 (1974); R. Hoffmann, Pure Appl. Chem., 24, 567 (1970).
(40) R. Hoffmann, J. Chem. Phys., 39, 1397 (1963).
(41) It is useful to comment at this point on the relevance, to a PMO interpretation, of the observation ${ }^{42}$ that $E_{\mathrm{T}}^{\mathrm{SCF}}=K \Sigma$ i $^{\text {occ }} 2 \epsilon_{\text {; }}$, since this relationship is obeyed by the molecules of the present investigation. At the 4-31G level, K is found to be 1.54, 1.62, and 1.61 for hydrazine, diphosphine, and aminophosphine, respectively, and to be conformationally invariant. At the STO-3G level, hydrazine is found to have $K=1.56$. According to one of the referees, a quantitative PMO analysis within a SCF scheme would have no meaning, unless the above relationship can be shown to exist, with K identical not only for the different molecules, but also for the fragments and the molecule. In our view, if the validity of the PMO analysis were to be dependent upon the existence of a Ruedenberg relationship, ${ }^{42 a}$ it would become necessary to treat all possible orbital interactions between the fragments. The method would thereby be reduced to a problem of book-
keeping, with loss of the (hoped-for) simple picture. To avoid this problem, we assume that the conformational behavior of a molecule is paralleled by the behavior of the HOMO. ${ }^{43}$ When this assumption is valid, an understanding of the behavior of the HOMO provides some understanding of the behavior of the molecule. The mathematical formalism presented in ref 21 permits a transformation of the computed molecular orbitals from an atomic orbital basis to a fragment orbital basis. For each conformation, the HOMO is then reconstructed in terms of the fragment orbital interactions that contribute to that HOMO. With this formalism, the first-order term of the perturbational expansion is included in the fragment orbital energy, and the form of the HOMO is then reproduced by the second-order term calculated with eq 1 and 2 . Figure 7 illustrates the application of this operational procedure to the rotational potential of diphosphine shown in Figure 1. The various curves in Figure 7 refer to E_{T}, the two-electron contribution to the HOMO, the four-electron contribution to the HOMO, the total PMO contribution to the HOMO, and $\epsilon_{\text {номо }}$. The curve for $\epsilon_{\text {номо }}$ has been multiplied by a constant factor of $1 / 4.66$, i.e., $\Sigma \Delta e_{t /} \simeq K \epsilon_{\text {номо }}$. Although the two-electron PMO term most closely resembles E_{T} in the present case, we have no evidence that such behavior will be observed generally. To overcome the charge that the PMO analysis is arbitrary, we therefore advocate that this analysis be based upon the HOMO. ${ }^{44}$
(42) (a) K. Ruedenberg, J. Chem. Phys., 66, 375 (1977); (b) L. J. Schaad, B. H. Robinson, and B. A. Hess, ibid., 67, 4616 (1977); (c) N. H. March, Ibid., 67, 4618 (1977); (d) T. Anno and Y. Sakai, ibid., 67, 4771 (1977); (e) A. B. Sannigrahi, B. R. De, and B. Guha Niyogi, ibid., 68, 784 (1978); (f) M. A. Whitehead, ibid., 69, 497 (1978); (g) D. G. Pettifor, Ibid., 69, 2930 (1978); (h) S.-T. Wu, ibid., 69, 2934 (1978); (i) T. Anno, ibid., 69, 2935 (1978); (j) M. Kertész, J. Koller, and A. Ažman, ibid., 69, 2937 (1978).
(43) B. M. Deb, J. Am. Chem. Soc., 96, 2030, 2040 (1974).
(44) A PMO analysis of rotation in hydrazine based upon 'tempered'" orbitals ${ }^{38}$ predicts the anti conformation of hydrazine to be ca. 30 kcal less stable than the gauche.
(45) A referee has pointed out that such conclusions are basis set dependent, and has urged caution in this regard. We comment that, in terms of our operational procedure, described in footnote 41, a basis set that reproduces an experimental trend should also produce a reliable PMO analysis. To check this point, we repeated the quantitative PMO analysis on the three molecules at the STO-3G (STO-3G) level, with the results shown in parentheses in Table V. It is clear that the stabilizing interactions dominate at the STO-3G level. It is also clear that the PMO analysis at this computational level has failed. The 90° conformation is predicted to be more stable in the case of hydrazine, and the 180° conformation is predicted to be more stable in the case of diphosphine. The total energy behavior is just the opposite in both cases. A final calculation was then performed on the 90 and 180° conformations of hydrazine at the 4-31G ${ }^{\circ}$ (STO-3G) level. The results of these calculations, summarized in footnotes a and b of Table III and footnote b of Table V , indicate that the 4-31G and 4-31G. basis sets lead to the same conclusions concerning both the total energy and the PMO behavior. We therefore suggest that the procedures advocated herein contain proper safeguards concerning the relative importance of stabilizing and destabilizing interactions. We also suggest that much more work will be needed before reliable qualitative rules can be provided for the PMO analysis of molecules containing adjacent electron pairs.
(46) R. D. Baechler and K. Mislow, J. Am. Chem. Soc., 93, 773 (1971).

Formation of Stable Monolayer Membranes and Related Structures in Dilute Aqueous Solution from Two-Headed Ammonium Amphiphiles

Yoshio Okahata and Toyoki Kunitake*
Contribution No. 484 from the Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka 812, Japan. Received March 5, 1979

Abstract

Two-headed, single-chain ammonium amphiphiles in which the hydrophobic chain was made of the flexible decamethylene unit and the rigid diphenylazomethine or biphenyl unit were synthesized. These amphiphiles produced huge ($10^{6}-$ 10^{7} daltons) aggregates in dilute aqueous solution. The basic structure of the aggregates was shown by electron microscopy to be the monolayer membrane. A rod-like structure resulted, when the flexible moiety increased. Addition of second components drastically changed the aggregate structure. For instance, rigid lamellae were converted to large single-walled vesicles by incorporation of cholesterol. The present finding is the first example of the formation of stable monolayer membranes.

Stable bilayer membranes have been prepared in dilute aqueous solution from a variety of totally synthetic amphiphiles which contain two higher alkyl chains $\left(\mathrm{C}_{10}-\mathrm{C}_{18}\right)$ as the hydrophobic moiety. The hydrophilic group of these amphiphiles may be cationic, ${ }^{1-5}$ anionic, ${ }^{6,7}$ nonionic, ${ }^{8}$ or zwitterionic. ${ }^{8}$ In
very recent studies, it is shown that the hydrophobic portion of these bilayer-forming amphiphiles can be replaced by a single-chain unit which contains a rigid segment such as diphenylazomethine ${ }^{9}$ or biphenyl group. ${ }^{10}$ Figures la,b illustrates schematically these bilayer structures.

